• 联系我们
  • 地址:湖北武汉三环科技园
  • 电话:159116031100
  • 传真:027-68834628
  • 邮箱:mmheng@foxmail.com
  • 当前所在位置:首页 - 学院新闻
  • 南佛罗里达大学孙宇:自动驾驶五大传感器各有千秋优劣均沾
  •   必须说明的是,“自动驾驶”并不是什么新生事物,早在上个世纪50年代,美国无线电公司(Radio Corporation of America,RCA)其已经掌握了自动驾驶汽车的相关技术,并实现了一次距离为400英尺(120米左右)的自动驾驶(参见雷锋网文章《回望上世纪60年代,自动驾驶汽车在当时“近在咫尺”》);而按照NHTSA和SAE对自动驾驶的划分,目前市场上在售的诸多具备车身稳定系统、防抱死系统、自动紧急制动,牵引力控制系统等功能的汽车已经达到了L1等级的自动驾驶,而我们熟悉的Google自动驾驶汽车,到目前为止亦未能达到L4等级的自动驾驶。而目前业界讨论的自动驾驶,更多的是在L3-L4级别上。

      不同等级的自动驾驶来说具有不同的方案,也需要不同的传感器。普遍应用于自动驾驶的传感器主要有以下几种:

      由于自动驾驶对车辆的要求极高,甚至要达到不逊于人类的水平,因此厂商通常会采用多种传感器,以取长补短。

      、方向、地图、交通标识、信号灯,此外还需要探测周边,包括其它车辆、行人、自行车、摩托车、障、马牙子、地上的坑、大门、围墙,或是突然出现在车前的小孩等等。

      传感器需要非常灵敏,才能以极快的速度探测到上述内容,并让车辆在几毫秒的时间内迅速做出反应。为了实现这一点,通常传感器的延迟需要控制在 2-3 毫秒内。

      而为了普及自动驾驶,传感器的价格应该控制在可以接受的范围内。不过,根据目前自动化的程度,价格也有着天壤之别。比如达到 Level 3 的车辆,鉴于它能提供的自动化程度相对有限,为了提升其在市场上的竞争力,传感器的价格应该控制在车辆价格的 10% ,甚至更低。而与之相对,达到 Level 4 的自动驾驶车辆需要实现共享功能,并且实现 24 小时可用的状态,传感器的价格自然水涨船高,可能占全车的一半以上。

      接下来,我们就一同来对比下方才介绍过的一些传感器,它们各有所长,也不尽完美,但我们可以从中一窥厂商取舍的动机。

      优点:分辨率高、速度快、传递的信息丰富、成本低。结合两个 2D摄像头,我们就能获得三维立体的信息。

      缺点:动态范围小(受强光和太阳影响)、对强计算能力有高要求,单摄像头无法提供3D信息,可能会有延迟;而在双摄像头状态下所提供的 3D 内容可能不够准确。

      基于上述优缺点,2D 摄像头擅长提供周边的丰富细节,能够清楚地辨识物体,准确理解交通信号灯、标识及车道所表达的含义,还能检测车辆、行人及自行车等。

      相对于其它传感器,2D摄像头的功能更加强大。例如,车道检测能够提升车辆的 GPS 定位准确度。

      声纳设备的工作原理为:发射器发射 50 千赫的超声波,接收器通过接收反弹回来的声波,以时间差测算出与物体的距离。

      综上所述,声纳传感器通常只能检测近距离物体,而且主要针对较近的障。因此,它的使用场景集中于辅助刹车,及停车时监测周边的车辆及车桩。举个例子,谷歌汽车在两个车后轮上都安置了声纳传感器,用于停车和倒车。由于价格亲民,一辆车上多加几个传感器也不肉痛。

      与声纳相似的是,LIDAR 也是通过发射和反射的时间差测量距离,只不过载体是激光而非声音。而同样地,LIDAR 也具备发射器和接收器,扫描设备通过捕捉每个角度反射的激光而测定距离。值得一提的是,该设备通常是将激光束重新定向的一个旋转镜。

      LIDAR 的监测范围因厂而异,有些廉价 LIDAR 只能探测数米远,而有些高端设备的测量距离甚至能达200 米;而激光束的扫描频率也从1 Hz到 100 Hz不等,当然也有更高频的设备。对于扫描的 LIDAR 而言,也分为单级和多级两种分辨率。

      相对来说,单线扫描器价格更便宜些,而 LIDAR 也以分辨率及距离两大因素为标准,价格从几百美金到上千美金不等。

      3D LIDAR 能对周边进行 360 度扫描,通常拥有多线D扫描功能,且价格极高。不过相对而言,3D LIDAR 的扫描速度较慢,只有几赫兹。

      高端 3D LIDAR 则拥有单线扫描,并且测量距离远达 200 米。一般而言,它所要处理的数据量也非常巨大。比如,Velodyne 的 HDL-32E 传感器每秒就能扫描 70 万个数据点。而一些模型甚至能每秒扫描 160万个 3D 数据点。上述 LIDAR 的价格非常昂贵,虽然单个产品本身成本不高,但每年面世的数量相对较少,就显得物以稀为贵了。以 Velodyne 为例,去年它只销售了数百个激光雷达。如果它的市场需求能提高到百万级,那么它的价格也会相应降低到数百美金。

      缺点:贵,缺少色彩信息,在监测能产生反射或透明的物体时准确性不够。收集的数据需要极高的计算能力,且扫描速度相对较慢。

      3D LIDAR 目前尚未得到大规模普及,但它提供了非常可靠而丰富的 3D 信息。Level 4 的自动驾驶车辆都可以采用 3D LIDAR,但对 Level 3 及以下的产品而言,价格就有点吃不消了。

      和上述两种传感器设备相似的是,它的原理同样是通过发射无线电信号(无线电频段的电磁波)并接收反射信号来测定与物体间的距离的。多普勒雷达测量的是反射信号的频率转变,并计算其速度变化。因此,雷达可以探测距离和障碍物的相对移动速度。多普勒雷达本身无法检测静止的物体。

      雷达能够检测 30-100 米远的物体,高端的雷达能够检测到很远的物体。雷达不受天气状况的影响,即使是雨雪雾霾都能正常运作,且对灰尘也不。

      但是,雷达传输的是电磁波信号,因此它无法检测上过漆的木头或是塑料(战斗机就是通过表面喷漆来躲过雷达信号的),而人类也几乎对雷达“免疫”。

      雷达对金属表面非常,如果是一个弯曲的金属表面,它会被雷达误认为是一个大型表面。因此,上一个小小的易拉罐甚至可能会被雷达判断为巨大的障。此外,雷达在大桥和隧道里的效果同样不佳。

      优点:由于其大批量生产的缘故,雷达的价格相对没那么昂贵,且对周边车辆的检测准确度较高,对于某些特定材料较。反应速度快,操作简单,能适应恶劣天气。

      因此,雷达通常广泛用于自动巡航控制,辅助变道及紧急制动系统。以谷歌汽车为例,它在前后的保险杠上装有四个雷达传感器,主要用于保持车距;而特斯拉比起摄像头而言更依赖雷达设备。

      IMU 测量的是加速度,高端及军用级别的 IMU 相对准确性更高,不过目前高精度的 IMU 还处于研究状态。

      整体而言,并没有任何一种传感器能尽善尽美地满足自动驾驶的所有需求。自动驾驶需要多种传感器的辅助配合才能顺利上,而后者联合提供的信息则更加立体和可信。比如,谷歌汽车采用的是 Velodyne 的360 LIDAR (64 激光束,探测距离达 200米)、检测近的前置相机、前后保险杠各两个雷达传感器,再加上 GPS、IMU 及两个后轮的声纳传感器。

      为鼓励在实现汽车强国目标和汽车产业转型的过程中作出突出贡献的企业和个人,盖世星期二左眼跳汽车发起创立“金辑”,设有“年度最佳车型”“年度最佳车企”“十大创新技术”“十大风云人物”等项,